Liver-expressed Igκ superantigen induces tolerance of polyclonal B cells by clonal deletion not κ to λ receptor editing
نویسندگان
چکیده
Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ-light chain-reactive superantigen targeted to the plasma membrane of hepatocytes (pAlb mice). In contrast to mice expressing κ superantigen ubiquitously, in which κ cells edit efficiently to λ, in pAlb mice, κ B cells underwent clonal deletion. Their κ cells failed to populate lymph nodes, and the remaining splenic κ cells were anergic, arrested at a semi-mature stage without undergoing receptor editing. In the liver, κ cells recognized superantigen, down-regulated surface Ig, and expressed active caspase 3, suggesting ongoing apoptosis at the site of B cell receptor ligand expression. Some, apparently mature, κ B1 and follicular B cells persisted in the peritoneum. BAFF (B cell-activating factor belonging to the tumor necrosis factor family) overexpression rescued splenic κ B cell maturation and allowed κ cells to populate lymph nodes. Our model facilitates analysis of tissue-specific autoimmunity, tolerance, and apoptosis in a polyclonal B cell population. The results suggest that deletion, not editing, is the major irreversible pathway of tolerance induction among peripheral B cells.
منابع مشابه
Receptor editing and genetic variability in human autoreactive B cells
The mechanisms by which B cells undergo tolerance, such as receptor editing, clonal deletion, and anergy, have been established in mice. However, corroborating these mechanisms in humans remains challenging. To study how autoreactive human B cells undergo tolerance, we developed a novel humanized mouse model. Mice expressing an anti-human Igκ membrane protein to serve as a ubiquitous neo self-a...
متن کاملIgκ allelic inclusion is a consequence of receptor editing
The discovery of lymphocytes bearing two light chains in mice carrying self-reactive antibody transgenes has challenged the "one lymphocyte-one antibody" rule. However, the extent and nature of allelically included cells in normal mice is unknown. We show that 10% of mature B cells coexpress both Igkappa alleles. These cells are not the result of failure in allelic exclusion per se, but arise t...
متن کاملB cell deletion, anergy, and receptor editing in "knock in" mice targeted with a germline-encoded or somatically mutated anti-DNA heavy chain.
To study the relative contributions of clonal deletion, clonal anergy, and receptor editing to tolerance induction in autoreactive B cells and their dependence on B cell receptor affinity, we have constructed "knock in" mice in which germline encoded or somatically mutated, rearranged anti-DNA heavy (H) chains were targeted to the H chain locus of the mouse. The targeted H chains were expressed...
متن کاملCentral tolerance to self-antigen expressed by cortical epithelial cells.
The exposure of developing thymocytes to high-affinity self-Ag results in T cell tolerance. A predominant mechanism for this is clonal deletion; though receptor editing, anergy induction, and positive selection of regulatory T cells have also been described. It is unclear what signals are involved in determining different tolerance mechanisms. In particular, OT-I mice displayed receptor editing...
متن کاملPre-B Cell Receptor Signaling Induces Immunoglobulin κ Locus Accessibility by Functional Redistribution of Enhancer-Mediated Chromatin Interactions
During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline V(κ) transcription. To investigate whether pre-BCR signaling modulates V(κ) accessibility through enhancer-mediat...
متن کامل